Поворот осей координат

Чтобы найти поворот осей, зададим две системы координат, согласно рисунку

Поворот осей

Пусть точка T в новой полярной системе координат имеет полярный радиус r и полярный угол φ. В старой полярной системе координат полярный угол точки T будет равен α+φ, а полярный радиус r  будет как в новой системе координат.

Тогда уравнения примут вид:

x = r cos(α+φ)

y = r sin(α+φ)

Применяя тригонометрические тождества суммы двух углов для синуса и косинуса , получим выражения:

x = r (cosα cosφ — sinα sinφ) = r (cosφ) cosα — (r  sinφ) sinα

y = r (sinα cosφ — cosα sinφ) = r (cosφ) sinα — (r  sinφ) cosα

Обозначим

X = r cosφ    и   Y = r sinφ

Получим уравнения поворота осей координат

x =  X cosα — Y sinα

y = X sinα — Y cosα

Если обозначим следующим образом

x  = OK , y = KT — старые координаты точки T
x´= OK´, y´ = KT´ — новые координаты точки T
α  — угол поворота осей

тогда формулы поворота осей координат примут вид:

Формулы поворот осей


Пример
До поворота осей на угол -300 точка L имела абсциссу x=2 и ординату y=0

Требуется найти координаты точки L после поворота осей.

Решение
Подставляя в формулу, находим новые координаты осей x´, y´

Leave a Reply

Ваш e-mail не будет опубликован.