Решение задачи коммивояжера методом ветвей и границ

Задача коммивояжёра заключается в разовом посещение всех городов по минимальному пути (маршруту) и возвращение в искомый город. Рассмотрим пример решения задачи коммивояжёра методом ветвей и границ Первая итерация  Найдём минимальные значения

Читать далее

Транспортная задача Метод потенциалов Пример решения

Метод потенциалов (оптимизация транспортных задач) Метод потенциалов для решения транспортной задачи с наименьшей стоимостью cij-(ui+vj)=0 при любых xij>0 cij-(ui+vj)>0 при любых xij=0 В случае cij-(ui+vj)<0 при любых xij=0 произвести перестановку

Читать далее

Метод множителей Лагранжа Найти экстремум функции

Метод множителей Лагранжа заключается в составлении функции Лагранжа, вида L(x1,x2..xn,λ)=f(x1,x2..xn)+λ·∑g(x1,x2..xn) λ — неопределённый множителей Лагранжа Составляется уравнение в соответствии с частными производными и находятся критические точки. Условия экстремума. ∂L/∂x1=0 ∂L/∂x2=0 …………..

Читать далее

Принцип максимума Понтрягина

Принцип максимума Понтрягина Условие задачи управления Алгоритм решения задачи оптимального управления на основе принципа максимума Понтрягина Вводится n-мерный вектор сопряженный переменной Y(t), определяется функция Гамильтона H(X,U,Y,t)=I(X,U,t)+Yf(X,U,t) Составить требуемые условия существования

Читать далее

Условие Куна-Таккера и уравнение Беллмана

Условие Куна-Таккера Условия допустимости ?1*≥0, ?2*≥0,?3*≥0,… ?m*≥0; ?i(x)≥0    i=1,m Условие оптимальности   Условие трансверсальности     Теорема Куна-Таккера применяется для нахождения оптимума и достаточных условий оптимальности в задачах нелинейного программирования. Уравнение

Читать далее

Условия задач линейного программирования

Линейное программирование – двойственная задача Условие прямой задача линейного программирования Целевая функция Ограничения Условие обратной задачи линейного программирования Целевая функция Ограничения   Постановка задачи по критерию стоимости Постановка задачи по

Читать далее

Венгерский метод решения задачи о назначениях

Математическая постановка задачи о назначениях Целевая функция имеет вид ограничения при этом матрица должна быть квадратной. Рассмотрим на примере решение задачи максимизации целевой функции о назначениях венгерским методом Допустим необходимо наилучшем образом

Читать далее

Симплекс метод с искусственным базисом

Решение задачи линейного программирование симплекс методом искусственного базиса (М-метод) Рассмотрим метод искусственного базиса на примере Дана целевая функция Z=3×1+2×2+x3→max Ограничения в виде системы линейных уравнений x1,x2,x3 ≥0 Для коэффициентов базисных переменных

Читать далее